hellcat-nardo-felidal/Assets/_PoiyomiShaders/Shaders/7.3/Pro/Includes/CGI_FunctionsArtistic.cginc

369 lines
12 KiB
HLSL
Raw Normal View History

2023-09-10 04:16:23 +00:00
#ifndef POI_FUNCTIONS_ARTISTIC
#define POI_FUNCTIONS_ARTISTIC
// Based on unity shader graph code
// * Adjustments * //
/*
* Channel Mixer
*
* Controls the amount each of the channels of input In contribute to each of the channels of output Out. The slider
* parameters on the node control the contribution of each of the input channels. The toggle button parameters control
* which of the output channels is currently being edited. Slider controls for editing the contribution of each input
* channnel range between -2 and 2.
*/
void poiChannelMixer(float3 In, float3 _ChannelMixer_Red, float3 _ChannelMixer_Green, float3 _ChannelMixer_Blue, out float3 Out)
{
Out = float3(dot(In, _ChannelMixer_Red), dot(In, _ChannelMixer_Green), dot(In, _ChannelMixer_Blue));
}
/*
* Contrast
*
* Adjusts the contrast of input In by the amount of input Contrast. A Contrast value of 1 will return the input
* unaltered. A Contrast value of 0 will return the midpoint of the input
*/
void poiContrast(float3 In, float Contrast, out float3 Out)
{
float midpoint = pow(0.5, 2.2);
Out = (In - midpoint) * Contrast + midpoint;
}
/*
* Invert Colors
*
* Inverts the colors of input In on a per channel basis. This Node assumes all input values are in the range 0 - 1.
*/
void poiInvertColors(float4 In, float4 InvertColors, out float4 Out)
{
Out = abs(InvertColors - In);
}
/*
* Replace Color
*
* Replaces values in input In equal to input From to the value of input To. Input Range can be used to define a
* wider range of values around input From to replace. Input Fuzziness can be used to soften the edges around the
* selection similar to anti-aliasing.
*/
void poiReplaceColor(float3 In, float3 From, float3 To, float Range, float Fuzziness, out float3 Out)
{
float Distance = distance(From, In);
Out = lerp(To, In, saturate((Distance - Range) / max(Fuzziness, 0.00001)));
}
/*
* Saturation
*
* Adjusts the saturation of input In by the amount of input Saturation. A Saturation value of 1 will return the input
* unaltered. A Saturation value of 0 will return the input completely desaturated.
*/
void poiSaturation(float3 In, float Saturation, out float3 Out)
{
float luma = dot(In, float3(0.2126729, 0.7151522, 0.0721750));
Out = luma.xxx + Saturation.xxx * (In - luma.xxx);
}
/*
* Dither Node
*
* Dither is an intentional form of noise used to randomize quantization error. It is used to prevent large-scale
* patterns such as color banding in images. The Dither node applies dithering in screen-space to ensure a uniform
* distribution of the pattern. This can be adjusted by connecting another node to input Screen Position.
*
* This Node is commonly used as an input to Alpha Clip Threshold on a Master Node to give the appearance of
* transparency to an opaque object. This is useful for creating objects that appear to be transparent but have
* the advantages of rendering as opaque, such as writing depth and/or being rendered in deferred.
*/
void poiDither(float4 In, float4 ScreenPosition, out float4 Out)
{
float2 uv = ScreenPosition.xy * _ScreenParams.xy;
float DITHER_THRESHOLDS[16] = {
1.0 / 17.0, 9.0 / 17.0, 3.0 / 17.0, 11.0 / 17.0,
13.0 / 17.0, 5.0 / 17.0, 15.0 / 17.0, 7.0 / 17.0,
4.0 / 17.0, 12.0 / 17.0, 2.0 / 17.0, 10.0 / 17.0,
16.0 / 17.0, 8.0 / 17.0, 14.0 / 17.0, 6.0 / 17.0
};
uint index = (uint(uv.x) % 4) * 4 + uint(uv.y) % 4;
Out = In - DITHER_THRESHOLDS[index];
}
/*
* Color Mask
*
* Creates a mask from values in input In equal to input Mask Color. Input Range can be used to define a wider
* range of values around input Mask Color to create the mask. Colors within this range will return 1,
* otherwise the node will return 0. Input Fuzziness can be used to soften the edges around the selection
* similar to anti-aliasing.
*/
void poiColorMask(float3 In, float3 MaskColor, float Range, float Fuzziness, out float4 Out)
{
float Distance = distance(MaskColor, In);
Out = saturate(1 - (Distance - Range) / max(Fuzziness, 0.00001));
}
float3 hueShift(float3 color, float Offset)
{
float4 K = float4(0.0, -1.0 / 3.0, 2.0 / 3.0, -1.0);
float4 P = lerp(float4(color.bg, K.wz), float4(color.gb, K.xy), step(color.b, color.g));
float4 Q = lerp(float4(P.xyw, color.r), float4(color.r, P.yzx), step(P.x, color.r));
float D = Q.x - min(Q.w, Q.y);
float E = 0.0000000001;
float3 hsv = float3(abs(Q.z + (Q.w - Q.y) / (6.0 * D + E)), D / (Q.x + E), Q.x);
float hue = hsv.x + Offset;
hsv.x = frac(hue);
float4 K2 = float4(1.0, 2.0 / 3.0, 1.0 / 3.0, 3.0);
float3 P2 = abs(frac(hsv.xxx + K2.xyz) * 6.0 - K2.www);
return hsv.z * lerp(K2.xxx, saturate(P2 - K2.xxx), hsv.y);
}
static const float Epsilon = 1e-10;
// The weights of RGB contributions to luminance.
// Should sum to unity.
static const float3 HCYwts = float3(0.299, 0.587, 0.114);
static const float HCLgamma = 3;
static const float HCLy0 = 100;
static const float HCLmaxL = 0.530454533953517; // == exp(HCLgamma / HCLy0) - 0.5
static const float3 wref = float3(1.0, 1.0, 1.0);
#define TAU 6.28318531
float3 HUEtoRGB(in float H)
{
float R = abs(H * 6 - 3) - 1;
float G = 2 - abs(H * 6 - 2);
float B = 2 - abs(H * 6 - 4);
return saturate(float3(R, G, B));
}
float3 RGBtoHCV(in float3 RGB)
{
// Based on work by Sam Hocevar and Emil Persson
float4 P = (RGB.g < RGB.b) ? float4(RGB.bg, -1.0, 2.0 / 3.0): float4(RGB.gb, 0.0, -1.0 / 3.0);
float4 Q = (RGB.r < P.x) ? float4(P.xyw, RGB.r): float4(RGB.r, P.yzx);
float C = Q.x - min(Q.w, Q.y);
float H = abs((Q.w - Q.y) / (6 * C + Epsilon) + Q.z);
return float3(H, C, Q.x);
}
float3 HSVtoRGB(in float3 HSV)
{
float3 RGB = HUEtoRGB(HSV.x);
return((RGB - 1) * HSV.y + 1) * HSV.z;
}
float3 RGBtoHSV(in float3 RGB)
{
float3 HCV = RGBtoHCV(RGB);
float S = HCV.y / (HCV.z + Epsilon);
return float3(HCV.x, S, HCV.z);
}
float3 HSLtoRGB(in float3 HSL)
{
float3 RGB = HUEtoRGB(HSL.x);
float C = (1 - abs(2 * HSL.z - 1)) * HSL.y;
return(RGB - 0.5) * C + HSL.z;
}
float3 RGBtoHSL(in float3 RGB)
{
float3 HCV = RGBtoHCV(RGB);
float L = HCV.z - HCV.y * 0.5;
float S = HCV.y / (1 - abs(L * 2 - 1) + Epsilon);
return float3(HCV.x, S, L);
}
float3 HCYtoRGB(in float3 HCY)
{
float3 RGB = HUEtoRGB(HCY.x);
float Z = dot(RGB, HCYwts);
if (HCY.z < Z)
{
HCY.y *= HCY.z / Z;
}
else if(Z < 1)
{
HCY.y *= (1 - HCY.z) / (1 - Z);
}
return(RGB - Z) * HCY.y + HCY.z;
}
float3 RGBtoHCY(in float3 RGB)
{
// Corrected by David Schaeffer
float3 HCV = RGBtoHCV(RGB);
float Y = dot(RGB, HCYwts);
float Z = dot(HUEtoRGB(HCV.x), HCYwts);
if (Y < Z)
{
HCV.y *= Z / (Epsilon + Y);
}
else
{
HCV.y *= (1 - Z) / (Epsilon + 1 - Y);
}
return float3(HCV.x, HCV.y, Y);
}
float3 HCLtoRGB(in float3 HCL)
{
float3 RGB = 0;
if(HCL.z != 0)
{
float H = HCL.x;
float C = HCL.y;
float L = HCL.z * HCLmaxL;
float Q = exp((1 - C / (2 * L)) * (HCLgamma / HCLy0));
float U = (2 * L - C) / (2 * Q - 1);
float V = C / Q;
float A = (H + min(frac(2 * H) / 4, frac(-2 * H) / 8)) * pi * 2;
float T;
H *= 6;
if(H <= 0.999)
{
T = tan(A);
RGB.r = 1;
RGB.g = T / (1 + T);
}
else if(H <= 1.001)
{
RGB.r = 1;
RGB.g = 1;
}
else if(H <= 2)
{
T = tan(A);
RGB.r = (1 + T) / T;
RGB.g = 1;
}
else if(H <= 3)
{
T = tan(A);
RGB.g = 1;
RGB.b = 1 + T;
}
else if(H <= 3.999)
{
T = tan(A);
RGB.g = 1 / (1 + T);
RGB.b = 1;
}
else if(H <= 4.001)
{
RGB.g = 0;
RGB.b = 1;
}
else if(H <= 5)
{
T = tan(A);
RGB.r = -1 / T;
RGB.b = 1;
}
else
{
T = tan(A);
RGB.r = 1;
RGB.b = -T;
}
RGB = RGB * V + U;
}
return RGB;
}
float3 RGBtoHCL(in float3 RGB)
{
float3 HCL;
float H = 0;
float U = min(RGB.r, min(RGB.g, RGB.b));
float V = max(RGB.r, max(RGB.g, RGB.b));
float Q = HCLgamma / HCLy0;
HCL.y = V - U;
if(HCL.y != 0)
{
H = atan2(RGB.g - RGB.b, RGB.r - RGB.g) / pi;
Q *= U / V;
}
Q = exp(Q);
HCL.x = frac(H / 2 - min(frac(H), frac(-H)) / 6);
HCL.y *= Q;
HCL.z = lerp(-U, V, Q) / (HCLmaxL * 2);
return HCL;
}
//HSL MODIFT
float3 ModifyViaHSL(float3 color, float3 HSLMod)
{
float3 colorHSL = RGBtoHSL(color);
colorHSL.r = frac(colorHSL.r + HSLMod.r);
colorHSL.g = saturate(colorHSL.g + HSLMod.g);
colorHSL.b = saturate(colorHSL.b + HSLMod.b);
return HSLtoRGB(colorHSL);
}
float3 poiSaturation(float3 In, float Saturation)
{
float luma = dot(In, float3(0.2126729, 0.7151522, 0.0721750));
return luma.xxx + Saturation.xxx * (In - luma.xxx);
}
// LCH
float xyzF(float t)
{
return lerp(pow(t, 1. / 3.), 7.787037 * t + 0.139731, step(t, 0.00885645));
}
float xyzR(float t)
{
return lerp(t * t * t, 0.1284185 * (t - 0.139731), step(t, 0.20689655));
}
float3 rgb2lch(in float3 c)
{
c = mul(float3x3(0.4124, 0.3576, 0.1805,
0.2126, 0.7152, 0.0722,
0.0193, 0.1192, 0.9505), c);
c.x = xyzF(c.x / wref.x);
c.y = xyzF(c.y / wref.y);
c.z = xyzF(c.z / wref.z);
float3 lab = float3(max(0., 116.0 * c.y - 16.0), 500.0 * (c.x - c.y), 200.0 * (c.y - c.z));
return float3(lab.x, length(float2(lab.y, lab.z)), atan2(lab.z, lab.y));
}
float3 lch2rgb(in float3 c)
{
c = float3(c.x, cos(c.z) * c.y, sin(c.z) * c.y);
float lg = 1. / 116. * (c.x + 16.);
float3 xyz = float3(wref.x * xyzR(lg + 0.002 * c.y),
wref.y * xyzR(lg),
wref.z * xyzR(lg - 0.005 * c.z));
float3 rgb = mul(float3x3(3.2406, -1.5372, -0.4986,
- 0.9689, 1.8758, 0.0415,
0.0557, -0.2040, 1.0570), xyz);
return rgb;
}
//cheaply lerp around a circle
float lerpAng(in float a, in float b, in float x)
{
float ang = fmod(fmod((a - b), TAU) + pi * 3., TAU) - pi;
return ang * x + b;
}
//Linear interpolation between two colors in Lch space
float3 lerpLch(in float3 a, in float3 b, in float x)
{
float hue = lerpAng(a.z, b.z, x);
return float3(lerp(b.xy, a.xy, x), hue);
}
float3 poiExpensiveColorBlend(float3 col1, float3 col2, float alpha)
{
return lch2rgb(lerpLch(rgb2lch(col1), rgb2lch(col2), alpha));
}
#endif