#ifndef POI_FUNCTIONS_ARTISTIC #define POI_FUNCTIONS_ARTISTIC // Based on unity shader graph code // * Adjustments * // /* * Channel Mixer * * Controls the amount each of the channels of input In contribute to each of the channels of output Out. The slider * parameters on the node control the contribution of each of the input channels. The toggle button parameters control * which of the output channels is currently being edited. Slider controls for editing the contribution of each input * channnel range between -2 and 2. */ void poiChannelMixer(float3 In, float3 _ChannelMixer_Red, float3 _ChannelMixer_Green, float3 _ChannelMixer_Blue, out float3 Out) { Out = float3(dot(In, _ChannelMixer_Red), dot(In, _ChannelMixer_Green), dot(In, _ChannelMixer_Blue)); } /* * Contrast * * Adjusts the contrast of input In by the amount of input Contrast. A Contrast value of 1 will return the input * unaltered. A Contrast value of 0 will return the midpoint of the input */ void poiContrast(float3 In, float Contrast, out float3 Out) { float midpoint = pow(0.5, 2.2); Out = (In - midpoint) * Contrast + midpoint; } /* * Invert Colors * * Inverts the colors of input In on a per channel basis. This Node assumes all input values are in the range 0 - 1. */ void poiInvertColors(float4 In, float4 InvertColors, out float4 Out) { Out = abs(InvertColors - In); } /* * Replace Color * * Replaces values in input In equal to input From to the value of input To. Input Range can be used to define a * wider range of values around input From to replace. Input Fuzziness can be used to soften the edges around the * selection similar to anti-aliasing. */ void poiReplaceColor(float3 In, float3 From, float3 To, float Range, float Fuzziness, out float3 Out) { float Distance = distance(From, In); Out = lerp(To, In, saturate((Distance - Range) / max(Fuzziness, 0.00001))); } /* * Saturation * * Adjusts the saturation of input In by the amount of input Saturation. A Saturation value of 1 will return the input * unaltered. A Saturation value of 0 will return the input completely desaturated. */ void poiSaturation(float3 In, float Saturation, out float3 Out) { float luma = dot(In, float3(0.2126729, 0.7151522, 0.0721750)); Out = luma.xxx + Saturation.xxx * (In - luma.xxx); } /* * Dither Node * * Dither is an intentional form of noise used to randomize quantization error. It is used to prevent large-scale * patterns such as color banding in images. The Dither node applies dithering in screen-space to ensure a uniform * distribution of the pattern. This can be adjusted by connecting another node to input Screen Position. * * This Node is commonly used as an input to Alpha Clip Threshold on a Master Node to give the appearance of * transparency to an opaque object. This is useful for creating objects that appear to be transparent but have * the advantages of rendering as opaque, such as writing depth and/or being rendered in deferred. */ void poiDither(float4 In, float4 ScreenPosition, out float4 Out) { float2 uv = ScreenPosition.xy * _ScreenParams.xy; float DITHER_THRESHOLDS[16] = { 1.0 / 17.0, 9.0 / 17.0, 3.0 / 17.0, 11.0 / 17.0, 13.0 / 17.0, 5.0 / 17.0, 15.0 / 17.0, 7.0 / 17.0, 4.0 / 17.0, 12.0 / 17.0, 2.0 / 17.0, 10.0 / 17.0, 16.0 / 17.0, 8.0 / 17.0, 14.0 / 17.0, 6.0 / 17.0 }; uint index = (uint(uv.x) % 4) * 4 + uint(uv.y) % 4; Out = In - DITHER_THRESHOLDS[index]; } /* * Color Mask * * Creates a mask from values in input In equal to input Mask Color. Input Range can be used to define a wider * range of values around input Mask Color to create the mask. Colors within this range will return 1, * otherwise the node will return 0. Input Fuzziness can be used to soften the edges around the selection * similar to anti-aliasing. */ void poiColorMask(float3 In, float3 MaskColor, float Range, float Fuzziness, out float4 Out) { float Distance = distance(MaskColor, In); Out = saturate(1 - (Distance - Range) / max(Fuzziness, 0.00001)); } float3 hueShift(float3 color, float Offset) { float4 K = float4(0.0, -1.0 / 3.0, 2.0 / 3.0, -1.0); float4 P = lerp(float4(color.bg, K.wz), float4(color.gb, K.xy), step(color.b, color.g)); float4 Q = lerp(float4(P.xyw, color.r), float4(color.r, P.yzx), step(P.x, color.r)); float D = Q.x - min(Q.w, Q.y); float E = 0.0000000001; float3 hsv = float3(abs(Q.z + (Q.w - Q.y) / (6.0 * D + E)), D / (Q.x + E), Q.x); float hue = hsv.x + Offset; hsv.x = frac(hue); float4 K2 = float4(1.0, 2.0 / 3.0, 1.0 / 3.0, 3.0); float3 P2 = abs(frac(hsv.xxx + K2.xyz) * 6.0 - K2.www); return hsv.z * lerp(K2.xxx, saturate(P2 - K2.xxx), hsv.y); } static const float Epsilon = 1e-10; // The weights of RGB contributions to luminance. // Should sum to unity. static const float3 HCYwts = float3(0.299, 0.587, 0.114); static const float HCLgamma = 3; static const float HCLy0 = 100; static const float HCLmaxL = 0.530454533953517; // == exp(HCLgamma / HCLy0) - 0.5 static const float3 wref = float3(1.0, 1.0, 1.0); #define TAU 6.28318531 float3 HUEtoRGB(in float H) { float R = abs(H * 6 - 3) - 1; float G = 2 - abs(H * 6 - 2); float B = 2 - abs(H * 6 - 4); return saturate(float3(R, G, B)); } float3 RGBtoHCV(in float3 RGB) { // Based on work by Sam Hocevar and Emil Persson float4 P = (RGB.g < RGB.b) ? float4(RGB.bg, -1.0, 2.0 / 3.0): float4(RGB.gb, 0.0, -1.0 / 3.0); float4 Q = (RGB.r < P.x) ? float4(P.xyw, RGB.r): float4(RGB.r, P.yzx); float C = Q.x - min(Q.w, Q.y); float H = abs((Q.w - Q.y) / (6 * C + Epsilon) + Q.z); return float3(H, C, Q.x); } float3 HSVtoRGB(in float3 HSV) { float3 RGB = HUEtoRGB(HSV.x); return((RGB - 1) * HSV.y + 1) * HSV.z; } float3 RGBtoHSV(in float3 RGB) { float3 HCV = RGBtoHCV(RGB); float S = HCV.y / (HCV.z + Epsilon); return float3(HCV.x, S, HCV.z); } float3 HSLtoRGB(in float3 HSL) { float3 RGB = HUEtoRGB(HSL.x); float C = (1 - abs(2 * HSL.z - 1)) * HSL.y; return(RGB - 0.5) * C + HSL.z; } float3 RGBtoHSL(in float3 RGB) { float3 HCV = RGBtoHCV(RGB); float L = HCV.z - HCV.y * 0.5; float S = HCV.y / (1 - abs(L * 2 - 1) + Epsilon); return float3(HCV.x, S, L); } float3 HCYtoRGB(in float3 HCY) { float3 RGB = HUEtoRGB(HCY.x); float Z = dot(RGB, HCYwts); if (HCY.z < Z) { HCY.y *= HCY.z / Z; } else if(Z < 1) { HCY.y *= (1 - HCY.z) / (1 - Z); } return(RGB - Z) * HCY.y + HCY.z; } float3 RGBtoHCY(in float3 RGB) { // Corrected by David Schaeffer float3 HCV = RGBtoHCV(RGB); float Y = dot(RGB, HCYwts); float Z = dot(HUEtoRGB(HCV.x), HCYwts); if (Y < Z) { HCV.y *= Z / (Epsilon + Y); } else { HCV.y *= (1 - Z) / (Epsilon + 1 - Y); } return float3(HCV.x, HCV.y, Y); } float3 HCLtoRGB(in float3 HCL) { float3 RGB = 0; if(HCL.z != 0) { float H = HCL.x; float C = HCL.y; float L = HCL.z * HCLmaxL; float Q = exp((1 - C / (2 * L)) * (HCLgamma / HCLy0)); float U = (2 * L - C) / (2 * Q - 1); float V = C / Q; float A = (H + min(frac(2 * H) / 4, frac(-2 * H) / 8)) * pi * 2; float T; H *= 6; if(H <= 0.999) { T = tan(A); RGB.r = 1; RGB.g = T / (1 + T); } else if(H <= 1.001) { RGB.r = 1; RGB.g = 1; } else if(H <= 2) { T = tan(A); RGB.r = (1 + T) / T; RGB.g = 1; } else if(H <= 3) { T = tan(A); RGB.g = 1; RGB.b = 1 + T; } else if(H <= 3.999) { T = tan(A); RGB.g = 1 / (1 + T); RGB.b = 1; } else if(H <= 4.001) { RGB.g = 0; RGB.b = 1; } else if(H <= 5) { T = tan(A); RGB.r = -1 / T; RGB.b = 1; } else { T = tan(A); RGB.r = 1; RGB.b = -T; } RGB = RGB * V + U; } return RGB; } float3 RGBtoHCL(in float3 RGB) { float3 HCL; float H = 0; float U = min(RGB.r, min(RGB.g, RGB.b)); float V = max(RGB.r, max(RGB.g, RGB.b)); float Q = HCLgamma / HCLy0; HCL.y = V - U; if(HCL.y != 0) { H = atan2(RGB.g - RGB.b, RGB.r - RGB.g) / pi; Q *= U / V; } Q = exp(Q); HCL.x = frac(H / 2 - min(frac(H), frac(-H)) / 6); HCL.y *= Q; HCL.z = lerp(-U, V, Q) / (HCLmaxL * 2); return HCL; } //HSL MODIFT float3 ModifyViaHSL(float3 color, float3 HSLMod) { float3 colorHSL = RGBtoHSL(color); colorHSL.r = frac(colorHSL.r + HSLMod.r); colorHSL.g = saturate(colorHSL.g + HSLMod.g); colorHSL.b = saturate(colorHSL.b + HSLMod.b); return HSLtoRGB(colorHSL); } float3 poiSaturation(float3 In, float Saturation) { float luma = dot(In, float3(0.2126729, 0.7151522, 0.0721750)); return luma.xxx + Saturation.xxx * (In - luma.xxx); } // LCH float xyzF(float t) { return lerp(pow(t, 1. / 3.), 7.787037 * t + 0.139731, step(t, 0.00885645)); } float xyzR(float t) { return lerp(t * t * t, 0.1284185 * (t - 0.139731), step(t, 0.20689655)); } float3 rgb2lch(in float3 c) { c = mul(float3x3(0.4124, 0.3576, 0.1805, 0.2126, 0.7152, 0.0722, 0.0193, 0.1192, 0.9505), c); c.x = xyzF(c.x / wref.x); c.y = xyzF(c.y / wref.y); c.z = xyzF(c.z / wref.z); float3 lab = float3(max(0., 116.0 * c.y - 16.0), 500.0 * (c.x - c.y), 200.0 * (c.y - c.z)); return float3(lab.x, length(float2(lab.y, lab.z)), atan2(lab.z, lab.y)); } float3 lch2rgb(in float3 c) { c = float3(c.x, cos(c.z) * c.y, sin(c.z) * c.y); float lg = 1. / 116. * (c.x + 16.); float3 xyz = float3(wref.x * xyzR(lg + 0.002 * c.y), wref.y * xyzR(lg), wref.z * xyzR(lg - 0.005 * c.z)); float3 rgb = mul(float3x3(3.2406, -1.5372, -0.4986, - 0.9689, 1.8758, 0.0415, 0.0557, -0.2040, 1.0570), xyz); return rgb; } //cheaply lerp around a circle float lerpAng(in float a, in float b, in float x) { float ang = fmod(fmod((a - b), TAU) + pi * 3., TAU) - pi; return ang * x + b; } //Linear interpolation between two colors in Lch space float3 lerpLch(in float3 a, in float3 b, in float x) { float hue = lerpAng(a.z, b.z, x); return float3(lerp(b.xy, a.xy, x), hue); } float3 poiExpensiveColorBlend(float3 col1, float3 col2, float alpha) { return lch2rgb(lerpLch(rgb2lch(col1), rgb2lch(col2), alpha)); } #endif