res-avatar-unity/Assets/_PoiyomiShaders/Shaders/7.3/Pro/Includes/CGI_PoiLighting.cginc
2023-07-15 19:51:23 -07:00

962 lines
38 KiB
HLSL
Executable file
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#ifndef POI_LIGHTING
#define POI_LIGHTING
float _LightingRampType;
float _LightingIgnoreAmbientColor;
float _UseShadowTexture;
float _LightingEnableAO;
float _LightingDetailShadowsEnabled;
float _LightingOnlyUnityShadows;
float _LightingMode;
float _ForceLightDirection;
float _ShadowStrength;
float _OutlineShadowStrength;
float _ShadowOffset;
float3 _LightDirection;
float _ForceShadowStrength;
float _CastedShadowSmoothing;
float _AttenuationMultiplier;
float _EnableLighting;
float _LightingControlledUseLightColor;
fixed _LightingStandardSmoothness;
fixed _LightingStandardControlsToon;
fixed _LightingMinLightBrightness;
float _LightingUseShadowRamp;
float _LightingMinShadowBrightnessRatio;
fixed _LightingMonochromatic;
fixed _LightingGradientStart;
fixed _LightingGradientEnd;
float3 _LightingShadowColor;
float _AOStrength;
fixed _LightingDetailStrength;
fixed _LightingAdditiveDetailStrength;
fixed _LightingNoIndirectMultiplier;
fixed _LightingNoIndirectThreshold;
float _LightingUncapped;
float _LightingDirectColorMode;
float _LightingIndirectColorMode;
float _LightingAdditiveType;
fixed _LightingAdditiveGradientStart;
fixed _LightingAdditiveGradientEnd;
fixed _LightingAdditivePassthrough;
float _LightingDirectAdjustment;
float _LightingIndirect;
// HSL JUNK
float _LightingEnableHSL;
float _LightingShadowHue;
float _LightingShadowSaturation;
float _LightingShadowLightness;
float _LightingHSLIntensity;
// UTS Style Shade Mapping
float4 _1st_ShadeColor;
float _Use_BaseAs1st;
float4 _2nd_ShadeColor;
float _Use_1stAs2nd;
float _BaseColor_Step;
float _BaseShade_Feather;
float _ShadeColor_Step;
float _1st2nd_Shades_Feather;
float _Use_1stShadeMapAlpha_As_ShadowMask;
float _1stShadeMapMask_Inverse;
float _Tweak_1stShadingGradeMapLevel;
float _Use_2ndShadeMapAlpha_As_ShadowMask;
float _2ndShadeMapMask_Inverse;
float _Tweak_2ndShadingGradeMapLevel;
// Skin
float _SkinScatteringProperties;
float _SssWeight;
float _SssMaskCutoff ;
float _SssBias;
float _SssScale;
float _SssBumpBlur;
float4 _SssTransmissionAbsorption;
float4 _SssColorBleedAoWeights;
/*
UNITY_DECLARE_TEX2D_NOSAMPLER(_ToonRamp3);
half _LightingShadowStrength3;
half _ShadowOffset3;
*/
half4 shadowStrength;
sampler2D _SkinLUT;
UNITY_DECLARE_TEX2D(_ToonRamp);
POI_TEXTURE_NOSAMPLER(_1st_ShadeMap);
POI_TEXTURE_NOSAMPLER(_2nd_ShadeMap);
POI_TEXTURE_NOSAMPLER(_LightingDetailShadows);
POI_TEXTURE_NOSAMPLER(_LightingAOTex);
POI_TEXTURE_NOSAMPLER(_LightingShadowMask);
float3 directLighting;
float3 indirectLighting;
/*
* DJLs code starts here
*/
float _LightingWrappedWrap;
float _LightingWrappedNormalization;
// Greens model with adjustable energy
// http://blog.stevemcauley.com/2011/12/03/energy-conserving-wrapped-diffuse/
// Modified for adjustable conservation ratio and over-wrap to directionless
float RTWrapFunc(in float dt, in float w, in float norm)
{
float cw = saturate(w);
float o = (dt + cw) / ((1.0 + cw) * (1.0 + cw * norm));
float flt = 1.0 - 0.85 * norm;
if (w > 1.0)
{
o = lerp(o, flt, w - 1.0);
}
return o;
}
float3 GreenWrapSH(float fA) // Greens unoptimized and non-normalized
{
float fAs = saturate(fA);
float4 t = float4(fA + 1, fAs - 1, fA - 2, fAs + 1); // DJL edit: allow wrapping to L0-only at w=2
return float3(t.x, -t.z * t.x / 3, 0.25 * t.y * t.y * t.w);
}
float3 GreenWrapSHOpt(float fW) // optimised and normalized https://blog.selfshadow.com/2012/01/07/righting-wrap-part-2/
{
const float4 t0 = float4(0.0, 1.0 / 4.0, -1.0 / 3.0, -1.0 / 2.0);
const float4 t1 = float4(1.0, 2.0 / 3.0, 1.0 / 4.0, 0.0);
float3 fWs = float3(fW, fW, saturate(fW)); // DJL edit: allow wrapping to L0-only at w=2
float3 r;
r.xyz = t0.xxy * fWs + t0.xzw;
r.xyz = r.xyz * fWs + t1.xyz;
return r;
}
float3 ShadeSH9_wrapped(float3 normal, float wrap)
{
float3 x0, x1, x2;
float3 conv = lerp(GreenWrapSH(wrap), GreenWrapSHOpt(wrap), _LightingWrappedNormalization); // Should try optimizing this...
conv *= float3(1, 1.5, 4); // Undo pre-applied cosine convolution by using the inverse
// Constant (L0)
x0 = float3(unity_SHAr.w, unity_SHAg.w, unity_SHAb.w);
// Remove pre-applied constant part from L(2,0) to apply correct convolution
float3 L2_0 = float3(unity_SHBr.z, unity_SHBg.z, unity_SHBb.z) / - 3.0;
x0 -= L2_0;
// Linear (L1) polynomial terms
x1.r = dot(unity_SHAr.xyz, normal);
x1.g = dot(unity_SHAg.xyz, normal);
x1.b = dot(unity_SHAb.xyz, normal);
// 4 of the quadratic (L2) polynomials
float4 vB = normal.xyzz * normal.yzzx;
x2.r = dot(unity_SHBr, vB);
x2.g = dot(unity_SHBg, vB);
x2.b = dot(unity_SHBb, vB);
// Final (5th) quadratic (L2) polynomial
float vC = normal.x * normal.x - normal.y * normal.y;
x2 += unity_SHC.rgb * vC;
// Move back the constant part of L(2,0)
x2 += L2_0;
return x0 * conv.x + x1 * conv.y + x2 * conv.z;
}
/*
* MIT License
*
* Copyright (c) 2018 s-ilent
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
/*
* Silent's code starts here
*/
float shEvaluateDiffuseL1Geomerics_local(float L0, float3 L1, float3 n)
{
// average energy
float R0 = max(0, L0);
// avg direction of incoming light
float3 R1 = 0.5f * L1;
// directional brightness
float lenR1 = length(R1);
// linear angle between normal and direction 0-1
//float q = 0.5f * (1.0f + dot(R1 / lenR1, n));
//float q = dot(R1 / lenR1, n) * 0.5 + 0.5;
float q = dot(normalize(R1), n) * 0.5 + 0.5;
q = saturate(q); // Thanks to ScruffyRuffles for the bug identity.
// power for q
// lerps from 1 (linear) to 3 (cubic) based on directionality
float p = 1.0f + 2.0f * lenR1 / R0;
// dynamic range constant
// should vary between 4 (highly directional) and 0 (ambient)
float a = (1.0f - lenR1 / R0) / (1.0f + lenR1 / R0);
return R0 * (a + (1.0f - a) * (p + 1.0f) * pow(q, p));
}
half3 BetterSH9(half4 normal)
{
float3 indirect;
float3 L0 = float3(unity_SHAr.w, unity_SHAg.w, unity_SHAb.w) + float3(unity_SHBr.z, unity_SHBg.z, unity_SHBb.z) / 3.0;
indirect.r = shEvaluateDiffuseL1Geomerics_local(L0.r, unity_SHAr.xyz, normal.xyz);
indirect.g = shEvaluateDiffuseL1Geomerics_local(L0.g, unity_SHAg.xyz, normal.xyz);
indirect.b = shEvaluateDiffuseL1Geomerics_local(L0.b, unity_SHAb.xyz, normal.xyz);
indirect = max(0, indirect);
indirect += SHEvalLinearL2(normal);
return indirect;
}
float3 BetterSH9(float3 normal)
{
return BetterSH9(float4(normal, 1));
}
/*
* Standard stuff starts here
*/
UnityLight CreateLight(float3 normal, fixed detailShadowMap)
{
UnityLight light;
light.dir = poiLight.direction;
light.color = saturate(_LightColor0.rgb * lerp(1, poiLight.attenuation, _AttenuationMultiplier) * detailShadowMap);
light.ndotl = DotClamped(normal, poiLight.direction);
return light;
}
float FadeShadows(float attenuation)
{
#if HANDLE_SHADOWS_BLENDING_IN_GI || ADDITIONAL_MASKED_DIRECTIONAL_SHADOWS
// UNITY_LIGHT_ATTENUATION doesn't fade shadows for us.
#if ADDITIONAL_MASKED_DIRECTIONAL_SHADOWS
attenuation = lerp(1, poiLight.attenuation, _AttenuationMultiplier);
#endif
float viewZ = dot(_WorldSpaceCameraPos - poiMesh.worldPos, UNITY_MATRIX_V[2].xyz);
float shadowFadeDistance = UnityComputeShadowFadeDistance(poiMesh.worldPos, viewZ);
float shadowFade = UnityComputeShadowFade(shadowFadeDistance);
float bakedAttenuation = UnitySampleBakedOcclusion(poiMesh.lightmapUV.xy, poiMesh.worldPos);
attenuation = UnityMixRealtimeAndBakedShadows(
attenuation, bakedAttenuation, shadowFade
);
#endif
return attenuation;
}
void ApplySubtractiveLighting(inout UnityIndirect indirectLight)
{
#if SUBTRACTIVE_LIGHTING
poiLight.attenuation = FadeShadows(lerp(1, poiLight.attenuation, _AttenuationMultiplier));
float ndotl = saturate(dot(i.normal, _WorldSpaceLightPos0.xyz));
float3 shadowedLightEstimate = ndotl * (1 - poiLight.attenuation) * _LightColor0.rgb;
float3 subtractedLight = indirectLight.diffuse - shadowedLightEstimate;
subtractedLight = max(subtractedLight, unity_ShadowColor.rgb);
subtractedLight = lerp(subtractedLight, indirectLight.diffuse, _LightShadowData.x);
indirectLight.diffuse = min(subtractedLight, indirectLight.diffuse);
#endif
}
float3 weightedBlend(float3 layer1, float3 layer2, float2 weights)
{
return(weights.x * layer1 + weights.y * layer2) / (weights.x + weights.y);
}
UnityIndirect CreateIndirectLight(float3 normal)
{
UnityIndirect indirectLight;
indirectLight.diffuse = 0;
indirectLight.specular = 0;
#if defined(FORWARD_BASE_PASS)
#if defined(LIGHTMAP_ON)
indirectLight.diffuse = DecodeLightmap(UNITY_SAMPLE_TEX2D(unity_Lightmap, poiMesh.lightmapUV.xy));
#if defined(DIRLIGHTMAP_COMBINED)
float4 lightmapDirection = UNITY_SAMPLE_TEX2D_SAMPLER(
unity_LightmapInd, unity_Lightmap, poiMesh.lightmapUV.xy
);
indirectLight.diffuse = DecodeDirectionalLightmap(
indirectLight.diffuse, lightmapDirection, normal
);
#endif
ApplySubtractiveLighting(indirectLight);
#endif
#if defined(DYNAMICLIGHTMAP_ON)
float3 dynamicLightDiffuse = DecodeRealtimeLightmap(
UNITY_SAMPLE_TEX2D(unity_DynamicLightmap, poiMesh.lightmapUV.zw)
);
#if defined(DIRLIGHTMAP_COMBINED)
float4 dynamicLightmapDirection = UNITY_SAMPLE_TEX2D_SAMPLER(
unity_DynamicDirectionality, unity_DynamicLightmap,
poiMesh.lightmapUV.zw
);
indirectLight.diffuse += DecodeDirectionalLightmap(
dynamicLightDiffuse, dynamicLightmapDirection, normal
);
#else
indirectLight.diffuse += dynamicLightDiffuse;
#endif
#endif
#if !defined(LIGHTMAP_ON) && !defined(DYNAMICLIGHTMAP_ON)
#if UNITY_LIGHT_PROBE_PROXY_VOLUME
if (unity_ProbeVolumeParams.x == 1)
{
indirectLight.diffuse = SHEvalLinearL0L1_SampleProbeVolume(
float4(normal, 1), poiMesh.worldPos
);
indirectLight.diffuse = max(0, indirectLight.diffuse);
#if defined(UNITY_COLORSPACE_GAMMA)
indirectLight.diffuse = LinearToGammaSpace(indirectLight.diffuse);
#endif
}
else
{
indirectLight.diffuse += max(0, ShadeSH9(float4(normal, 1)));
}
#else
indirectLight.diffuse += max(0, ShadeSH9(float4(normal, 1)));
#endif
#endif
float3 reflectionDir = reflect(-poiCam.viewDir, normal);
Unity_GlossyEnvironmentData envData;
envData.roughness = 1 - _LightingStandardSmoothness;
envData.reflUVW = BoxProjection(
reflectionDir, poiMesh.worldPos.xyz,
unity_SpecCube0_ProbePosition,
unity_SpecCube0_BoxMin.xyz, unity_SpecCube0_BoxMax.xyz
);
float3 probe0 = Unity_GlossyEnvironment(
UNITY_PASS_TEXCUBE(unity_SpecCube0), unity_SpecCube0_HDR, envData
);
envData.reflUVW = BoxProjection(
reflectionDir, poiMesh.worldPos.xyz,
unity_SpecCube1_ProbePosition,
unity_SpecCube1_BoxMin.xyz, unity_SpecCube1_BoxMax.xyz
);
#if UNITY_SPECCUBE_BLENDING
float interpolator = unity_SpecCube0_BoxMin.w;
UNITY_BRANCH
if (interpolator < 0.99999)
{
float3 probe1 = Unity_GlossyEnvironment(
UNITY_PASS_TEXCUBE_SAMPLER(unity_SpecCube1, unity_SpecCube0),
unity_SpecCube0_HDR, envData
);
indirectLight.specular = lerp(probe1, probe0, interpolator);
}
else
{
indirectLight.specular = probe0;
}
#else
indirectLight.specular = probe0;
#endif
float occlusion = 1;
UNITY_BRANCH
if (_LightingEnableAO)
{
occlusion = lerp(1, POI2D_SAMPLER_PAN(_LightingAOTex, _MainTex, poiMesh.uv[_LightingAOTexUV], _LightingAOTexPan).r, _AOStrength);
}
indirectLight.diffuse *= occlusion;
indirectLight.diffuse = max(indirectLight.diffuse, _LightingMinLightBrightness);
indirectLight.specular *= occlusion;
#endif
return indirectLight;
}
/*
* Poiyomi's cool as heck code starts here :smug:
*/
half PoiDiffuse(half NdotV, half NdotL, half LdotH)
{
half fd90 = 0.5 + 2 * LdotH * LdotH * SmoothnessToPerceptualRoughness(.5);
// Two schlick fresnel term
half lightScatter = (1 + (fd90 - 1) * Pow5(1 - NdotL));
half viewScatter = (1 + (fd90 - 1) * Pow5(1 - NdotV));
return lightScatter * viewScatter;
}
float3 ShadeSH9Indirect()
{
return ShadeSH9(half4(0.0, -1.0, 0.0, 1.0));
}
float3 ShadeSH9Direct()
{
return ShadeSH9(half4(0.0, 1.0, 0.0, 1.0));
}
float3 ShadeSH9Normal(float3 normalDirection)
{
return ShadeSH9(half4(normalDirection, 1.0));
}
half3 GetSHLength()
{
half3 x, x1;
x.r = length(unity_SHAr);
x.g = length(unity_SHAg);
x.b = length(unity_SHAb);
x1.r = length(unity_SHBr);
x1.g = length(unity_SHBg);
x1.b = length(unity_SHBb);
return x + x1;
}
half3 GetSHDirectionL1()
{
//float3 grayscale = float3(.3, .59, .11);
float3 grayscale = float3(.33333, .33333, .33333);
half3 r = Unity_SafeNormalize(half3(unity_SHAr.x, unity_SHAr.y, unity_SHAr.z));
half3 g = Unity_SafeNormalize(half3(unity_SHAg.x, unity_SHAg.y, unity_SHAg.z));
half3 b = Unity_SafeNormalize(half3(unity_SHAb.x, unity_SHAb.y, unity_SHAb.z));
return Unity_SafeNormalize(grayscale.r * r + grayscale.g * g + grayscale.b * b);
}
float3 GetSHDirectionL1_()
{
// For efficiency, we only get the direction from L1.
// Because getting it from L2 would be too hard!
return Unity_SafeNormalize((unity_SHAr.xyz + unity_SHAg.xyz + unity_SHAb.xyz));
}
// Returns the value from SH in the lighting direction with the
// brightest intensity.
half3 GetSHMaxL1()
{
float3 maxDirection = GetSHDirectionL1();
return ShadeSH9_wrapped(maxDirection, 0);
}
float3 calculateRealisticLighting(float4 colorToLight, fixed detailShadowMap)
{
return UNITY_BRDF_PBS(1, 0, 0, _LightingStandardSmoothness, poiMesh.normals[1], poiCam.viewDir, CreateLight(poiMesh.normals[1], detailShadowMap), CreateIndirectLight(poiMesh.normals[1])).xyz;
}
void calculateBasePassLightMaps()
{
#if defined(FORWARD_BASE_PASS) || defined(POI_META_PASS)
float AOMap = 1;
float AOStrength = 0;
float3 lightColor = poiLight.color;
/*
* Generate Basic Light Maps
*/
bool lightExists = false;
if (any(_LightColor0.rgb >= 0.002))
{
lightExists = true;
}
#ifndef OUTLINE
UNITY_BRANCH
if (_LightingEnableAO)
{
AOMap = POI2D_SAMPLER_PAN(_LightingAOTex, _MainTex, poiMesh.uv[_LightingAOTexUV], _LightingAOTexPan).r;
AOStrength = _AOStrength;
poiLight.occlusion = lerp(1, AOMap, AOStrength);
}
#ifdef FORWARD_BASE_PASS
//poiLight.color = saturate(_LightColor0.rgb) + saturate(ShadeSH9(normalize(unity_SHAr + unity_SHAg + unity_SHAb)));
if (lightExists)
{
lightColor = _LightColor0.rgb + BetterSH9(float4(0, 0, 0, 1));
}
else
{
lightColor = BetterSH9(normalize(unity_SHAr + unity_SHAg + unity_SHAb));
}
//lightColor = magic * magiratio + normalLight * normaRatio;
//lightColor = magic + normalLight;
#endif
#endif
float3 grayscale_vector = float3(.33333, .33333, .33333);
float3 ShadeSH9Plus = GetSHLength();
float3 ShadeSH9Minus = float3(unity_SHAr.w, unity_SHAg.w, unity_SHAb.w) + float3(unity_SHBr.z, unity_SHBg.z, unity_SHBb.z) / 3.0;
shadowStrength = 1;
#ifndef OUTLINE
shadowStrength = POI2D_SAMPLER_PAN(_LightingShadowMask, _MainTex, poiMesh.uv[_LightingShadowMaskUV], _LightingShadowMaskPan) * _ShadowStrength;
#else
shadowStrength = _OutlineShadowStrength;
#endif
float bw_lightColor = dot(lightColor, grayscale_vector);
float bw_directLighting = (((poiLight.nDotL * 0.5 + 0.5) * bw_lightColor * lerp(1, poiLight.attenuation, _AttenuationMultiplier)) + dot(ShadeSH9Normal(poiMesh.normals[1]), grayscale_vector));
float bw_bottomIndirectLighting = dot(ShadeSH9Minus, grayscale_vector);
float bw_topIndirectLighting = dot(ShadeSH9Plus, grayscale_vector);
float lightDifference = ((bw_topIndirectLighting + bw_lightColor) - bw_bottomIndirectLighting);
fixed detailShadow = 1;
UNITY_BRANCH
if (_LightingDetailShadowsEnabled)
{
detailShadow = lerp(1, POI2D_SAMPLER_PAN(_LightingDetailShadows, _MainTex, poiMesh.uv[_LightingDetailShadowsUV], _LightingDetailShadowsPan), _LightingDetailStrength).r;
}
UNITY_BRANCH
if (_LightingOnlyUnityShadows)
{
poiLight.lightMap = poiLight.attenuation;
}
else
{
poiLight.lightMap = smoothstep(0, lightDifference, bw_directLighting - bw_bottomIndirectLighting);
}
poiLight.lightMap *= detailShadow;
/*
* Decide on light colors
*/
indirectLighting = 0;
directLighting = 0;
UNITY_BRANCH
if (_LightingIndirectColorMode == 1)
{
indirectLighting = BetterSH9(float4(poiMesh.normals[1], 1));
}
else
{
indirectLighting = ShadeSH9Minus;
}
poiLight.directLighting = lightColor;
poiLight.indirectLighting = indirectLighting;
UNITY_BRANCH
if (_LightingDirectColorMode == 0)
{
float3 magic = max(BetterSH9(normalize(unity_SHAr + unity_SHAg + unity_SHAb)), 0);
float3 normalLight = _LightColor0.rgb + BetterSH9(float4(0, 0, 0, 1));
float magiLumi = calculateluminance(magic);
float normaLumi = calculateluminance(normalLight);
float maginormalumi = magiLumi + normaLumi;
float magiratio = magiLumi / maginormalumi;
float normaRatio = normaLumi / maginormalumi;
float target = calculateluminance(magic * magiratio + normalLight * normaRatio);
float3 properLightColor = magic * poiLight.occlusion + normalLight;
float properLuminance = calculateluminance(magic + normalLight);
directLighting = properLightColor * max(0.0001, (target / properLuminance));
}
else
{
if (lightExists)
{
directLighting = _LightColor0.rgb + BetterSH9(float4(0, 0, 0, 1)) * poiLight.occlusion;
}
else
{
directLighting = max(BetterSH9(normalize(unity_SHAr + unity_SHAg + unity_SHAb)), 0);
}
}
UNITY_BRANCH
if (!_LightingUncapped)
{
float directluminance = calculateluminance(directLighting);
float indirectluminance = calculateluminance(indirectLighting);
directLighting = min(directLighting, directLighting / max(0.0001, (directluminance / 1)));
indirectLighting = min(indirectLighting, indirectLighting / max(0.0001, (indirectluminance / 1)));
}
directLighting = lerp(directLighting, dot(directLighting, float3(0.299, 0.587, 0.114)), _LightingMonochromatic);
indirectLighting = lerp(indirectLighting, dot(indirectLighting, float3(0.299, 0.587, 0.114)), _LightingMonochromatic);
if (max(max(indirectLighting.x, indirectLighting.y), indirectLighting.z) <= _LightingNoIndirectThreshold && max(max(directLighting.x, directLighting.y), directLighting.z) >= 0)
{
indirectLighting = directLighting * _LightingNoIndirectMultiplier;
}
UNITY_BRANCH
if (_LightingMinShadowBrightnessRatio)
{
float directluminance = clamp(directLighting.r * 0.299 + directLighting.g * 0.587 + directLighting.b * 0.114, 0, 1);
if (directluminance > 0)
{
indirectLighting = max(0.001, indirectLighting);
}
float indirectluminance = clamp(indirectLighting.r * 0.299 + indirectLighting.g * 0.587 + indirectLighting.b * 0.114, 0, 1);
float targetluminance = directluminance * _LightingMinShadowBrightnessRatio;
if (indirectluminance < targetluminance)
{
indirectLighting = indirectLighting / max(0.0001, indirectluminance / targetluminance);
}
}
poiLight.rampedLightMap = 1 - smoothstep(0, .5, 1 - poiLight.lightMap);
poiLight.finalLighting = directLighting;
indirectLighting = max(indirectLighting, 0);
directLighting = max(directLighting, 0);
/*
* Create Gradiant Maps
*/
switch(_LightingRampType)
{
case 0: // Ramp Texture
{
poiLight.rampedLightMap = lerp(1, UNITY_SAMPLE_TEX2D(_ToonRamp, poiLight.lightMap + _ShadowOffset).rgb, shadowStrength.r);
UNITY_BRANCH
if (_LightingIgnoreAmbientColor)
{
poiLight.finalLighting = lerp(poiLight.rampedLightMap * directLighting * poiLight.occlusion, directLighting, poiLight.rampedLightMap);
}
else
{
poiLight.finalLighting = lerp(indirectLighting * poiLight.occlusion, directLighting, poiLight.rampedLightMap);
}
}
break;
case 1: // Math Gradient
{
poiLight.rampedLightMap = saturate(1 - smoothstep(_LightingGradientStart - .000001, _LightingGradientEnd, 1 - poiLight.lightMap));
float3 shadowColor = _LightingShadowColor;
UNITY_BRANCH
if (_UseShadowTexture)
{
shadowColor = 1;
}
UNITY_BRANCH
if (_LightingIgnoreAmbientColor)
{
poiLight.finalLighting = lerp((directLighting * shadowColor * poiLight.occlusion), (directLighting), saturate(poiLight.rampedLightMap + 1 - _ShadowStrength));
}
else
{
poiLight.finalLighting = lerp((indirectLighting * shadowColor * poiLight.occlusion), (directLighting), saturate(poiLight.rampedLightMap + 1 - _ShadowStrength));
}
}
break;
case 2:
{
poiLight.rampedLightMap = saturate(1 - smoothstep(0, .5, 1 - poiLight.lightMap));
poiLight.finalLighting = directLighting;
}
break;
}
// DJL stuff
if (_LightingMode == 2) // Wrapped
{
poiLight.directLighting = (_LightColor0.rgb) * saturate(RTWrapFunc(poiLight.nDotL, _LightingWrappedWrap, _LightingWrappedNormalization)) * detailShadow * lerp(1, poiLight.attenuation, _AttenuationMultiplier);
poiLight.indirectLighting = ShadeSH9_wrapped(poiMesh.normals[_LightingIndirectColorMode], _LightingWrappedWrap) * poiLight.occlusion;
float3 ShadeSH9Plus_2 = GetSHMaxL1();
float bw_topDirectLighting_2 = dot(_LightColor0.rgb, grayscale_vector);
float bw_directLighting = dot(poiLight.directLighting, grayscale_vector);
float bw_indirectLighting = dot(poiLight.indirectLighting, grayscale_vector);
float bw_topIndirectLighting = dot(ShadeSH9Plus_2, grayscale_vector);
//poiLight.lightMap = saturate(dot(poiLight.indirectLighting + poiLight.directLighting, grayscale_vector));
poiLight.lightMap = smoothstep(0, bw_topIndirectLighting + bw_topDirectLighting_2, bw_indirectLighting + bw_directLighting);
poiLight.rampedLightMap = 1;
UNITY_BRANCH
if (_LightingRampType == 0) // Ramp Texture
{
poiLight.rampedLightMap = lerp(1, UNITY_SAMPLE_TEX2D(_ToonRamp, poiLight.lightMap + _ShadowOffset).rgb, shadowStrength.r);
}
else if (_LightingRampType == 1) // Math Gradient
{
poiLight.rampedLightMap = lerp(_LightingShadowColor * lerp(poiLight.indirectLighting, 1, _LightingIgnoreAmbientColor), float3(1, 1, 1), saturate(1 - smoothstep(_LightingGradientStart - .000001, _LightingGradientEnd, 1 - poiLight.lightMap)));
poiLight.rampedLightMap = lerp(float3(1, 1, 1), poiLight.rampedLightMap, shadowStrength.r);
}
poiLight.finalLighting = (poiLight.indirectLighting + poiLight.directLighting) * saturate(poiLight.rampedLightMap + 1 - _ShadowStrength);
}
if (!_LightingUncapped)
{
poiLight.finalLighting = saturate(poiLight.finalLighting);
}
//poiLight.finalLighting *= .8;
#endif
}
/*
void applyShadowTexture(inout float4 albedo)
{
UNITY_BRANCH
if (_UseShadowTexture && _LightingRampType == 1)
{
albedo.rgb = lerp(albedo.rgb, POI2D_SAMPLER_PAN(_LightingShadowTexture, _MainTex, poiMesh.uv[_LightingShadowTextureUV], _LightingShadowTexturePan) * _LightingShadowColor, (1 - poiLight.rampedLightMap) * shadowStrength);
}
}
*/
float3 calculateNonImportantLighting(float attenuation, float attenuationDotNL, float3 albedo, float3 lightColor, half dotNL, half correctedDotNL)
{
fixed detailShadow = 1;
UNITY_BRANCH
if (_LightingDetailShadowsEnabled)
{
detailShadow = lerp(1, POI2D_SAMPLER_PAN(_LightingDetailShadows, _MainTex, poiMesh.uv[_LightingDetailShadowsUV], _LightingDetailShadowsPan), _LightingAdditiveDetailStrength).r;
}
UNITY_BRANCH
if (_LightingAdditiveType == 0)
{
return lightColor * attenuationDotNL * detailShadow; // Realistic
}
else if (_LightingAdditiveType == 1) // Toon
{
return lerp(lightColor * attenuation, lightColor * _LightingAdditivePassthrough * attenuation, smoothstep(_LightingAdditiveGradientStart, _LightingAdditiveGradientEnd, dotNL)) * detailShadow;
}
else //if(_LightingAdditiveType == 2) // Wrapped
{
float uv = saturate(RTWrapFunc(-dotNL, _LightingWrappedWrap, _LightingWrappedNormalization)) * detailShadow;
poiLight.rampedLightMap = 1;
if (_LightingRampType == 1) // Math Gradient
poiLight.rampedLightMap = lerp(_LightingShadowColor, float3(1, 1, 1), saturate(1 - smoothstep(_LightingGradientStart - .000001, _LightingGradientEnd, 1 - uv)));
// TODO: ramp texture or full shade/tint map for atlasing
return lightColor * poiLight.rampedLightMap * saturate(attenuation * uv);
}
}
void applyShadeMaps(inout float4 albedo)
{
UNITY_BRANCH
if (_LightingRampType == 2)
{
float3 baseColor = albedo.rgb;
float MainColorFeatherStep = _BaseColor_Step - _BaseShade_Feather;
float firstColorFeatherStep = _ShadeColor_Step - _1st2nd_Shades_Feather;
#if defined(PROP_1ST_SHADEMAP) || !defined(OPTIMIZER_ENABLED)
float4 firstShadeMap = POI2D_SAMPLER_PAN(_1st_ShadeMap, _MainTex, poiMesh.uv[_1st_ShadeMapUV], _1st_ShadeMapPan);
#else
float4 firstShadeMap = float4(1, 1, 1, 1);
#endif
firstShadeMap = lerp(firstShadeMap, albedo, _Use_BaseAs1st);
#if defined(PROP_2ND_SHADEMAP) || !defined(OPTIMIZER_ENABLED)
float4 secondShadeMap = POI2D_SAMPLER_PAN(_2nd_ShadeMap, _MainTex, poiMesh.uv[_2nd_ShadeMapUV], _2nd_ShadeMapPan);
#else
float4 secondShadeMap = float4(1, 1, 1, 1);
#endif
secondShadeMap = lerp(secondShadeMap, firstShadeMap, _Use_1stAs2nd);
firstShadeMap.rgb *= _1st_ShadeColor.rgb; //* lighColor
secondShadeMap.rgb *= _2nd_ShadeColor.rgb; //* LightColor;
float shadowMask = 1;
shadowMask *= _Use_1stShadeMapAlpha_As_ShadowMask ?(_1stShadeMapMask_Inverse ?(1.0 - firstShadeMap.a) : firstShadeMap.a) : 1;
shadowMask *= _Use_2ndShadeMapAlpha_As_ShadowMask ?(_2ndShadeMapMask_Inverse ?(1.0 - secondShadeMap.a) : secondShadeMap.a) : 1;
float mainShadowMask = saturate(1 - ((poiLight.lightMap) - MainColorFeatherStep) / (_BaseColor_Step - MainColorFeatherStep) * (shadowMask));
float firstSecondShadowMask = saturate(1 - ((poiLight.lightMap) - firstColorFeatherStep) / (_ShadeColor_Step - firstColorFeatherStep) * (shadowMask));
#if defined(PROP_LIGHTINGSHADOWMASK) || !defined(OPTIMIZER_ENABLED)
float removeShadow = POI2D_SAMPLER_PAN(_LightingShadowMask, _MainTex, poiMesh.uv[_LightingShadowMaskUV], _LightingShadowMaskPan).r;
#else
float removeShadow = 1;
#endif
mainShadowMask *= removeShadow;
firstSecondShadowMask *= removeShadow;
albedo.rgb = lerp(albedo.rgb, lerp(firstShadeMap.rgb, secondShadeMap.rgb, firstSecondShadowMask), mainShadowMask);
}
}
float3 calculateFinalLighting(inout float3 albedo, float4 finalColor)
{
float3 finalLighting = 1;
// Additive Lighting
#ifdef FORWARD_ADD_PASS
fixed detailShadow = 1;
UNITY_BRANCH
if (_LightingDetailShadowsEnabled)
{
detailShadow = lerp(1, POI2D_SAMPLER_PAN(_LightingDetailShadows, _MainTex, poiMesh.uv[_LightingDetailShadowsUV], _LightingDetailShadowsPan), _LightingAdditiveDetailStrength).r;
}
UNITY_BRANCH
if (_LightingAdditiveType == 0) // Realistic
{
finalLighting = poiLight.color * poiLight.attenuation * max(0, poiLight.nDotL) * detailShadow * poiLight.additiveShadow;
}
else if (_LightingAdditiveType == 1) // Toon
{
#if defined(POINT) || defined(SPOT)
finalLighting = lerp(poiLight.color * max(poiLight.additiveShadow, _LightingAdditivePassthrough), poiLight.color * _LightingAdditivePassthrough, smoothstep(_LightingAdditiveGradientStart, _LightingAdditiveGradientEnd, 1 - (.5 * poiLight.nDotL + .5))) * poiLight.attenuation * detailShadow;
#else
finalLighting = lerp(poiLight.color * max(poiLight.attenuation, _LightingAdditivePassthrough), poiLight.color * _LightingAdditivePassthrough, smoothstep(_LightingAdditiveGradientStart, _LightingAdditiveGradientEnd, 1 - (.5 * poiLight.nDotL + .5))) * detailShadow;
#endif
}
else //if(_LightingAdditiveType == 2) // Wrapped
{
float uv = saturate(RTWrapFunc(poiLight.nDotL, _LightingWrappedWrap, _LightingWrappedNormalization)) * detailShadow;
poiLight.rampedLightMap = 1;
UNITY_BRANCH
if (_LightingRampType == 1) // Math Gradient
poiLight.rampedLightMap = lerp(_LightingShadowColor, float3(1, 1, 1), saturate(1 - smoothstep(_LightingGradientStart - .000001, _LightingGradientEnd, 1 - uv)));
// TODO: ramp texture or full shade/tint map for atlasing
//poiLight.rampedLightMap = lerp(1, UNITY_SAMPLE_TEX2D(_ToonRamp, float2(uv + _ShadowOffset, 1)), shadowStrength.r);
float shadowatten = max(poiLight.additiveShadow, _LightingAdditivePassthrough);
return poiLight.color * poiLight.rampedLightMap * saturate(poiLight.attenuation * uv * shadowatten);
}
#endif
// Base and Meta Lighting
#if defined(FORWARD_BASE_PASS) || defined(POI_META_PASS)
#ifdef VERTEXLIGHT_ON
poiLight.vFinalLighting = 0;
for (int index = 0; index < 4; index++)
{
poiLight.vFinalLighting += calculateNonImportantLighting(poiLight.vAttenuation[index], poiLight.vAttenuationDotNL[index], albedo, poiLight.vColor[index], poiLight.vDotNL[index], poiLight.vCorrectedDotNL[index]);
}
#endif
switch(_LightingMode)
{
case 0: // Toon Lighting
case 2: // or wrapped
{
// HSL Shading
UNITY_BRANCH
if (_LightingEnableHSL)
{
float3 HSLMod = float3(_LightingShadowHue * 2 - 1, _LightingShadowSaturation * 2 - 1, _LightingShadowLightness * 2 - 1) * (1 - poiLight.rampedLightMap);
albedo = lerp(albedo.rgb, ModifyViaHSL(albedo.rgb, HSLMod), _LightingHSLIntensity);
}
// Normal Shading
UNITY_BRANCH
if (_LightingMinLightBrightness > 0)
{
poiLight.finalLighting = max(0.001, poiLight.finalLighting);
float finalluminance = calculateluminance(poiLight.finalLighting);
finalLighting = max(poiLight.finalLighting, poiLight.finalLighting / max(0.0001, (finalluminance / _LightingMinLightBrightness)));
poiLight.finalLighting = finalLighting;
}
else
{
finalLighting = poiLight.finalLighting;
}
}
break;
case 1: // realistic
{
fixed detailShadow = 1;
UNITY_BRANCH
if (_LightingDetailShadowsEnabled)
{
detailShadow = lerp(1, POI2D_SAMPLER_PAN(_LightingDetailShadows, _MainTex, poiMesh.uv[_LightingDetailShadowsUV], _LightingDetailShadowsPan), _LightingDetailStrength).r;
}
float3 realisticLighting = calculateRealisticLighting(finalColor, detailShadow).rgb;
finalLighting = lerp(realisticLighting, dot(realisticLighting, float3(0.299, 0.587, 0.114)), _LightingMonochromatic);
}
break;
case 3: // Skin
{
float subsurfaceShadowWeight = 0.0h;
float3 ambientNormalWorld = poiMesh.normals[1];//aTangentToWorld(s, s.blurredNormalTangent);
// Scattering mask.
float subsurface = 1;
float skinScatteringMask = _SssWeight * saturate(1.0h / _SssMaskCutoff * subsurface);
float skinScattering = saturate(subsurface * _SssScale * 2 + _SssBias);
// Skin subsurface depth absorption tint.
// cf http://www.crytek.com/download/2014_03_25_CRYENGINE_GDC_Schultz.pdf pg 35
half3 absorption = exp((1.0h - subsurface) * _SssTransmissionAbsorption.rgb);
// Albedo scale for absorption assumes ~0.5 luminance for Caucasian skin.
absorption *= saturate(finalColor.rgb * unity_ColorSpaceDouble.rgb);
// Blurred normals for indirect diffuse and direct scattering.
ambientNormalWorld = normalize(lerp(poiMesh.normals[1], ambientNormalWorld, _SssBumpBlur));
float ndlBlur = dot(poiMesh.normals[1], poiLight.direction) * 0.5h + 0.5h;
float lumi = dot(poiLight.color, half3(0.2126h, 0.7152h, 0.0722h));
float4 sssLookupUv = float4(ndlBlur, skinScattering * lumi, 0.0f, 0.0f);
half3 sss = poiLight.lightMap * poiLight.attenuation * tex2Dlod(_SkinLUT, sssLookupUv).rgb;
finalLighting = min(lerp(indirectLighting * _LightingShadowColor, _LightingShadowColor, _LightingIgnoreAmbientColor) + (sss * directLighting), directLighting);
}
break;
case 4:
{
finalLighting = directLighting;
}
break;
}
#endif
return finalLighting;
}
void applyLighting(inout float4 finalColor, float3 finalLighting)
{
#ifdef VERTEXLIGHT_ON
finalColor.rgb *= finalLighting + poiLight.vFinalLighting;
#else
//finalColor.rgb = blendSoftLight(finalColor.rgb, finalLighting);
//finalColor.rgb *= saturate(poiLight.directLighting);
finalColor.rgb *= finalLighting;
#endif
}
#endif