#ifndef POI_BRDF #define POI_BRDF /* * MIT License * * Copyright (c) 2020 Xiexe * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #if defined(PROP_BRDFMETALLICGLOSSMAP) || !defined(OPTIMIZER_ENABLED) POI_TEXTURE_NOSAMPLER(_BRDFMetallicGlossMap); #endif #if defined(PROP_BRDFSPECULARMAP) || !defined(OPTIMIZER_ENABLED) POI_TEXTURE_NOSAMPLER(_BRDFSpecularMap); #endif #if defined(PROP_BRDFMETALLICMAP) || !defined(OPTIMIZER_ENABLED) POI_TEXTURE_NOSAMPLER(_BRDFMetallicMap); #endif samplerCUBE _BRDFFallback; float _BRDFMetallic; float _BRDFGlossiness; float _BRDFReflectance; float _BRDFAnisotropy; float _BRDFReflectionsEnabled; float _BRDFSpecularEnabled; float _BRDFInvertGlossiness; float _BRDFForceFallback; float _BRDFMetallicSpecIgnoresBaseColor; bool DoesReflectionProbeExist() { float4 envSample = UNITY_SAMPLE_TEXCUBE_LOD(unity_SpecCube0, poiCam.reflectionDir, UNITY_SPECCUBE_LOD_STEPS); bool probeExists = !(unity_SpecCube0_HDR.a == 0 && envSample.a == 0); return probeExists && !_BRDFForceFallback; } float getGeometricSpecularAA(float3 normal) { float3 vNormalWsDdx = ddx(normal.xyz); float3 vNormalWsDdy = ddy(normal.xyz); float flGeometricRoughnessFactor = pow(saturate(max(dot(vNormalWsDdx.xyz, vNormalWsDdx.xyz), dot(vNormalWsDdy.xyz, vNormalWsDdy.xyz))), 0.333); return max(0, flGeometricRoughnessFactor); } float3 getAnisotropicReflectionVector(float3 viewDir, float3 bitangent, float3 tangent, float3 normal, float roughness, float anisotropy) { float3 anisotropicDirection = anisotropy >= 0.0 ? bitangent : tangent; float3 anisotropicTangent = cross(anisotropicDirection, viewDir); float3 anisotropicNormal = cross(anisotropicTangent, anisotropicDirection); float bendFactor = abs(anisotropy) * saturate(5.0 * roughness); float3 bentNormal = normalize(lerp(normal, anisotropicNormal, bendFactor)); return reflect(-viewDir, bentNormal); } float3 F_Schlick(float u, float3 f0) { return f0 + (1.0 - f0) * pow(1.0 - u, 5.0); } float3 F_Schlick(const float3 f0, float f90, float VoH) { // Schlick 1994, "An Inexpensive BRDF Model for Physically-Based Rendering" float pow5 = 1.0 - VoH; pow5 = pow5 * pow5 * pow5 * pow5 * pow5; return f0 + (f90 - f0) * pow5; } float D_GGX(float NoH, float roughness) { float a2 = roughness * roughness; float f = (NoH * a2 - NoH) * NoH + 1.0; return a2 / (UNITY_PI * f * f); } float V_SmithGGXCorrelated(float NoV, float NoL, float a) { float a2 = a * a; float GGXL = NoV * sqrt((-NoL * a2 + NoL) * NoL + a2); float GGXV = NoL * sqrt((-NoV * a2 + NoV) * NoV + a2); return 0.5 / (GGXV + GGXL); } float D_GGX_Anisotropic(float NoH, const float3 h, const float3 t, const float3 b, float at, float ab) { float ToH = dot(t, h); float BoH = dot(b, h); float a2 = at * ab; float3 v = float3(ab * ToH, at * BoH, a2 * NoH); float v2 = dot(v, v); float w2 = a2 / v2; return a2 * w2 * w2 * (1.0 / UNITY_PI); } float3 getBoxProjection(float3 direction, float3 position, float4 cubemapPosition, float3 boxMin, float3 boxMax) { // #if defined(UNITY_SPECCUBE_BOX_PROJECTION) // For some reason this doesn't work? if (cubemapPosition.w > 0) { float3 factors = ((direction > 0 ? boxMax : boxMin) - position) / direction; float scalar = min(min(factors.x, factors.y), factors.z); direction = direction * scalar + (position - cubemapPosition.xyz); } // #endif return direction; } float3 getDirectSpecular(float roughness, float ndh, float vdn, float ndl, float ldh, float3 f0, float3 halfVector, float3 tangent, float3 bitangent, float anisotropy) { #if !defined(LIGHTMAP_ON) float rough = max(roughness * roughness, 0.0045); float Dn = D_GGX(ndh, rough); float3 F = F_Schlick(ldh, f0); float V = V_SmithGGXCorrelated(vdn, ndl, rough); float3 directSpecularNonAniso = max(0, (Dn * V) * F); anisotropy *= saturate(5.0 * roughness); float at = max(rough * (1.0 + anisotropy), 0.001); float ab = max(rough * (1.0 - anisotropy), 0.001); float D = D_GGX_Anisotropic(ndh, halfVector, tangent, bitangent, at, ab); float3 directSpecularAniso = max(0, (D * V) * F); return lerp(directSpecularNonAniso, directSpecularAniso, saturate(abs(_BRDFAnisotropy * 100))) * 3; // * 100 to prevent blending, blend because otherwise tangents are fucked on lightmapped object #else return 0; #endif } float3 getIndirectSpecular(float metallic, float roughness, float3 reflDir, float3 worldPos, float3 lightmap, float3 normal) { float3 spec = float3(0, 0, 0); #if defined(UNITY_PASS_FORWARDBASE) float3 indirectSpecular; Unity_GlossyEnvironmentData envData; envData.roughness = roughness; envData.reflUVW = getBoxProjection( reflDir, worldPos, unity_SpecCube0_ProbePosition, unity_SpecCube0_BoxMin.xyz, unity_SpecCube0_BoxMax.xyz ); float3 probe0 = Unity_GlossyEnvironment(UNITY_PASS_TEXCUBE(unity_SpecCube0), unity_SpecCube0_HDR, envData); float interpolator = unity_SpecCube0_BoxMin.w; UNITY_BRANCH if (interpolator < 0.99999) { envData.reflUVW = getBoxProjection( reflDir, worldPos, unity_SpecCube1_ProbePosition, unity_SpecCube1_BoxMin.xyz, unity_SpecCube1_BoxMax.xyz ); float3 probe1 = Unity_GlossyEnvironment(UNITY_PASS_TEXCUBE_SAMPLER(unity_SpecCube1, unity_SpecCube0), unity_SpecCube0_HDR, envData); indirectSpecular = lerp(probe1, probe0, interpolator); } else { indirectSpecular = probe0; } if (!DoesReflectionProbeExist()) { indirectSpecular = texCUBElod(_BRDFFallback, float4(reflDir, roughness * UNITY_SPECCUBE_LOD_STEPS)).rgb * poiLight.finalLighting; } float horizon = min(1 + dot(reflDir, normal), 1); indirectSpecular *= horizon * horizon; spec = indirectSpecular; #if defined(LIGHTMAP_ON) float specMultiplier = max(0, lerp(1, pow(length(lightmap), _SpecLMOcclusionAdjust), _SpecularLMOcclusion)); spec *= specMultiplier; #endif #endif return spec; } void poiBRDF(inout float4 finalColor, const float4 finalColorBeforeLighting) { float4 ret = float4(1, 0, 0, 1); #if defined(PROP_BRDFMETALLICGLOSSMAP) || !defined(OPTIMIZER_ENABLED) float4 metallicGlossMap = POI2D_SAMPLER_PAN(_BRDFMetallicGlossMap, _MainTex, poiMesh.uv[_BRDFMetallicGlossMapUV], _BRDFMetallicGlossMapPan); #else float4 metallicGlossMap = 1; #endif #if defined(PROP_BRDFSPECULARMAP) || !defined(OPTIMIZER_ENABLED) float4 spcularTintMask = POI2D_SAMPLER_PAN(_BRDFSpecularMap, _MainTex, poiMesh.uv[_BRDFSpecularMapUV], _BRDFSpecularMapPan); #else float4 spcularTintMask = 1; #endif #if defined(PROP_BRDFMETALLICMAP) || !defined(OPTIMIZER_ENABLED) float4 metallicTintMask = POI2D_SAMPLER_PAN(_BRDFMetallicMap, _MainTex, poiMesh.uv[_BRDFMetallicMapUV], _BRDFMetallicMapPan); #else float4 metallicTintMask = 1; #endif UNITY_BRANCH if (_BRDFInvertGlossiness == 1) { metallicGlossMap.a = 1 - metallicGlossMap.a; } float metallic = metallicGlossMap.r * _BRDFMetallic; float reflectance = metallicGlossMap.g * _BRDFReflectance; float roughness = max(1 - (_BRDFGlossiness * metallicGlossMap.a), getGeometricSpecularAA(poiMesh.normals[1])); finalColor.rgb *= lerp(1, 1 - metallic, _BRDFReflectionsEnabled); float3 reflViewDir = getAnisotropicReflectionVector(poiCam.viewDir, poiMesh.binormal, poiMesh.tangent.xyz, poiMesh.normals[1], roughness, _BRDFAnisotropy); float3 reflLightDir = reflect(poiLight.direction, poiMesh.normals[1]); #if defined(FORWARD_BASE_PASS) || defined(POI_META_PASS) float attenuation = poiMax(poiLight.rampedLightMap); #endif #ifdef FORWARD_ADD_PASS float attenuation = saturate(poiLight.nDotL); #endif float3 f0 = 0.16 * reflectance * reflectance * (1.0 - metallic) + lerp(finalColorBeforeLighting.rgb * metallic, 1, _BRDFMetallicSpecIgnoresBaseColor); float3 fresnel = lerp(F_Schlick(poiLight.nDotV, f0), f0, metallic); //Kill fresnel on metallics, it looks bad. float3 directSpecular = getDirectSpecular(roughness, saturate(poiLight.nDotH), max(poiLight.nDotV, 0.000001), attenuation, saturate(poiLight.lDotH), f0, poiLight.halfDir, poiMesh.tangent.xyz, poiMesh.binormal, _BRDFAnisotropy) * poiLight.attenuation * attenuation * poiLight.color; directSpecular = min(directSpecular, poiLight.color); float3 vDirectSpecular = 0; #ifdef VERTEXLIGHT_ON for (int index = 0; index < 4; index++) { float3 v0directSpecular = getDirectSpecular(roughness, saturate(poiLight.vDotNH[index]), max(poiLight.nDotV, 0.000001), attenuation, saturate(poiLight.lDotH), f0, poiLight.vHalfDir[index], poiMesh.tangent, poiMesh.binormal, _BRDFAnisotropy) * poiLight.attenuation * poiLight.vAttenuationDotNL[index] * poiLight.vColor[index]; vDirectSpecular += min(v0directSpecular, poiLight.vColor[index]); } #endif float3 indirectSpecular = getIndirectSpecular(metallic, roughness, reflViewDir, poiMesh.worldPos, /*directDiffuse*/ finalColor.rgb, poiMesh.normals[1]) * lerp(fresnel, f0, roughness); float3 specular = indirectSpecular * _BRDFReflectionsEnabled * metallicTintMask.a * metallicTintMask.rgb * poiLight.occlusion + (directSpecular + vDirectSpecular) * _BRDFSpecularEnabled * spcularTintMask.a * spcularTintMask.rgb; finalColor.rgb += specular; } #endif