#ifndef POI_MATH #define POI_MATH #ifndef pi #define pi float(3.14159265359) #endif float4 quaternion_conjugate(float4 v) { return float4( v.x, -v.yzw ); } float4 quaternion_mul(float4 v1, float4 v2) { float4 result1 = (v1.x * v2 + v1 * v2.x); float4 result2 = float4( - dot(v1.yzw, v2.yzw), cross(v1.yzw, v2.yzw) ); return float4(result1 + result2); } float4 get_quaternion_from_angle(float3 axis, float angle) { return float4( cos(angle / 2.0), normalize(axis) * sin(angle / 2.0) ); } float4 quaternion_from_vector(float3 inVec) { return float4(0.0, inVec); } float degree_to_radius(float degree) { return( degree / 180.0 * pi ); } float3 rotate_with_quaternion(float3 inVec, float3 rotation) { float4 qx = get_quaternion_from_angle(float3(1, 0, 0), degree_to_radius(rotation.x)); float4 qy = get_quaternion_from_angle(float3(0, 1, 0), degree_to_radius(rotation.y)); float4 qz = get_quaternion_from_angle(float3(0, 0, 1), degree_to_radius(rotation.z)); #define MUL3(A, B, C) quaternion_mul(quaternion_mul((A), (B)), (C)) float4 quaternion = normalize(MUL3(qx, qy, qz)); float4 conjugate = quaternion_conjugate(quaternion); float4 inVecQ = quaternion_from_vector(inVec); float3 rotated = ( MUL3(quaternion, inVecQ, conjugate) ).yzw; return rotated; } float4 transform(float4 input, float4 pos, float4 rotation, float4 scale) { input.rgb *= (scale.xyz * scale.w); input = float4(rotate_with_quaternion(input.xyz, rotation.xyz/* * rotation.w*/) + (pos.xyz/* * pos.w*/), input.w); return input; } #endif